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LEAF NODE RANKING METHOD IN
DECISION TREES FOR SPATIAL
PREDICTION AND ITS RECORDING
MEDIUM

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to Korean Patent Applica-
tion No. 10-2014-0076414 filed on Jun. 23, 2014 and all the
benefits accruing therefrom under 35 U.S.C. §119, the con-
tents of which are incorporated by reference in their entirety
to the extent permitted by law.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates, generally, to spatial predic-
tion and, more particularly, to a leaf node ranking method in
decision trees for spatial prediction, and its recording
medium, the decision trees being one of data mining classi-
fication methods.

2. Description of the Related Art

Decision trees are used for cause analysis of prediction
results in various prediction fields because training results
may be intuitively converted to decision rules. Also, the deci-
sion trees are successfully applied to prediction fields thanks
to guaranteeing accuracy and speed.

General tree-based algorithms are comprised of a tree
building phase and a tree pruning phase. A difference between
tree structures that are constructed from a tree algorithm
mostly comes from attribute selection criteria and tree prun-
ing criteria.

After a decision tree is constructed through training data, a
decision rule may be converted by differently selecting a path
from a root node to a leaf node. Branching from the root node,
the training data is finally distributed on the leaf nodes, and a
rank (or a priority) of the rule induced from the tree is calcu-
lated using class distribution included in the leaf nodes. This
rank is calculated by a proportion of multiple classes to total
classes, and a small number of classes are considered as
misclassifications. On the other hand, in a spatial prediction
application, the rank is calculated by a proportion of target
classes, which are prediction targets, to the total classes.

As decision trees aim to make “pure” leaves by node split-
ting criteria, a component ratio of event classes of a leaf node
is eventually converged into O or 1. Therefore, it is not easy to
assign a rank to the leaf node. Existing leaf node ranking
methods are invented to solve the above problem and have
been used for prediction applications for non-spatial data.

Prediction accuracy may vary according to leaf node rank-
ing methods. Laplace estimate involves applying Laplace
correction when calculating a frequency of event classes for
evaluating the rank of a leaf node. In other words, Laplace
estimate is used to improve existing probability estimates and
may be modified as equation 1 for a spatial prediction appli-
cation.

Poven + 1 [equation 1]

R(node) =

Pevent + Fnon_event +C

Here, ¢ means the number of classes in total data sets.

M-estimate, another method for leaf node ranking, uses a
prior probability to an event class. In a spatial prediction
application, assuming that b and m are constant parameters
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2

and b is the prior probability to an event occurrence, the
equation is defined as follows.

Reyen: + DM [equation 2]

R(node) =

Revent + Flnon_evenr +M

M-branch method is a variation of M-estimate, and is
defined as equation 3 for spatial event prediction. Here, m is
calculated using the depth of a node and the number of
samples that are included in a class without a label.

Revenr + MR(node. parent) [equation 3]

R(node) =

Pevent + Pnon_event + M

Here, the parameter, m, is calculated by the equation,

M+(d-1)/dxMVN.

As previous leaf node ranking methods (Laplace estimate,
m-branch, and M-estimate) are proposed for spatial multi-
class classification, existing equations are modified to above
defined equations 1 to 3 for a spatial prediction application. In
other words, the equations may represent a relative probabil-
ity of occurrence of an event by modifying the existing equa-
tions to reflect a proportion of event-occurring classes to total
classes.

DOCUMENTS OF RELATED ART

(Patent Document 1) Korean Patent No. 10-1264223, “A
SPATIAL PREDICTION ANALYSIS TECHNIQUE
USING A DECISION TREE”

(Non-patent Document 1) [1] B. Cestnik, “Estimating prob-
abilities: A crucial task in machine learning”, In Proc. Of
the European Conf. on Artificial Intelligence, pp. 147-149,
1990.

(Non-patent Document 2) [2] B. Zadrozny, and C. Elkan,
“Obtaining calibrated probability estimates from decision
trees and naive Bayesian classifiers”, In Proc. 18th Int.
Conf. on Machine Learning, pp. 609-616, 2001.

(Non-patent Document 3) [3] C. Ferri, P. A. Flach, and J.
Hernndez-Orallo, “Improving the AUC of Probabilistic
Estimation Trees”, In Proc. Of the 14th European Conf. on
Machine Learning, pp. 121-132, 2003.

(Non-patent Document 4) [4] D. M. Cruden, and D. J. Varnes,
“Landslide types and process. In: Turner, A. K. and R. L.
Schuster (eds.), Landslides: investigation and mitigation.
Transportation Research Board, Special Report, vol. 247,
pp- 36-75, 1996.

(Non-patent Document 5) [5] F. J. Provost, and P. Domingos,
“Tree induction for Probability-based Ranking”, Machine
Learning, Kluwer Academic Publisher, vol. 52, pp. 199-
215, 2003.

(Non-patent Document 6) [6] J. Cussents, “Bayes and psudo-
bayes estimates of conditional probabilities and their reli-
abilities”, Proceedings of FEuropean Conference on
Machine Learning, pp. 136-152. 1993.

(Non-patent Document 7) [7] J. R. Quinlan, “C4.5: programs
for machine learning”, Morgan Kaufmann Publishers Inc.,
San Francisco, Calif., USA, 1993.

(Non-patent Document 8) [8] R. Dikau, L. Schrott, D. Bruns-
den, and M. L. Ibsen, “Landslide recognition: Identifica-
tion, Movement and Causes”, John Wiley & Sons: Chich-
ester, UK, 1996, pp. 122-136.
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(Non-patent Document 9) [9] T. Brandenburger, and A. Furth,
“Cumulative Gains Model Quality Metric”, Advances in
Decision Sciences, doi.org/10.1155/2009/868215, 2009.

(Non-patent Document 10) [10] W. R. Tobler, “A computer
movie simulating urban growth in the Detroit region”,
Economic Geographer, vol. 46, pp. 234-40, 1970.

(Non-patent Document 11) [11] X. Wu, V. Kumar, J. R. Quin-
lan, J. Ghosh, Q. Yang, H. Motoda, G. J. MacLachlan, A.
Ng, B. Liu, P. S. Yu, Z. H. Zhou, M. Steinbach, D. J. Hand,
and D. Steinberg, “Top 10 algorithms in data mining”,
Knowledge and Information Systems, vol. 14, pp. 1-37,
2008.

(Non-patent Document 12) [12] Y. K. Yeon, J. K. Han, and K.
H. Ryu, “Landslide susceptibility mapping in Injae, Korea,
using a decision tree”, Engineering Geology, vol. 116, pp.
274-282, 2010.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a method
for effectively determining a relative rank of a leaf node of a
tree that learns from training data, for spatial prediction in
decision trees.

In order to accomplish the above object, a leaf node ranking
method in decision trees for spatial prediction according to an
embodiment of the present invention includes: a learning step
(S8110) to form a decision tree having one root node, in which
each parent node has multiple child nodes, using training data
set for spatial prediction; and a leaf node ranking step (S120)
to determine ranks of leaf nodes in the decision tree that has
finished the learning. In the learning step (S110), each node of
the decision tree includes both the number of classes accord-
ing to class distribution of training data and structures for
storing the number. In the leaf node ranking step (S120), the
rank of the leaf node is determined using the number of
classes according to class distribution, which is stored in each
node on a path from the root node to the leaf node.

Consequently, a rank is determined for each node forming
the trained decision tree, and a relation between the rank of
the parent node and child node is defined as equation 4.

R(node.parent)<R(node.child) [equation 4]

In this case, when the rank of the parent node (R(node.par-
ent)) is the same as the rank of the child node (R(node.child)),
the child node does not include a spatial event-occurring
class, and when the rank of the child node is more than the
rank of the parent node, the child node includes an event-
occurring class.

The leaf node ranking step (S130) is performed using equa-
tion 5.

Revent

[equation 5]
(Pevent + ”non,evem) xd

R(node.child) = R(node.parent) +

Here, d indicates a depth of a node in a tree.

In order to accomplish the object described above, a com-
puter-readable storage medium is provided to store a leaf
node ranking method in decision trees for spatial prediction
according to an embodiment of the present invention.

Consequently, a leaf node ranking method in decision trees
for spatial prediction according to an embodiment of the
present invention may be used to improve problems from
existing methods.

A decision tree has various parameters for constructing the
tree, and a structure of the tree may vary depending on the
parameters. The existing methods using class distributions
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included in leaf nodes may deduce prediction results suscep-
tible to the tree structure. On the other hand, the present
invention uses class distributions included in all nodes in the
tree. Therefore, the prediction results are less susceptible to
the tree structure compared to the prediction results from the
existing methods.

Because spatial data is relatively massive data, it costs
much to make a model using the massive data in a decision
tree. Also, in the existing methods, as additional user-defined
parameters are necessary for a leaf node ranking process,
repeated construction of atree is costly. On the other hand, the
present invention does not have additional parameters
because the results are not susceptible to the tree structure.
Therefore, the present invention may reduce cost for the
construction of the tree.

As leaf node ranking methods intends to evaluate relative
priorities to rules, an applicative range of the rules may not be
applied. In other words, the applicative range of the rules was
not reflected in determination of the ranks. On the other hand,
as a rule evaluation method according to the present invention
uses a result of a parent node, the applicative range of the rule
may be effectively reflected on determination of the rank.

Consequently, the leaf node ranking method in decision
trees for spatial prediction, proposed by the present invention,
may solve the above problems and effectively perform the
spatial prediction.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and other advantages
of'the present invention will be more clearly understood from
the following detailed description taken in conjunction with
the accompanying drawings, in which:

FIG. 1 is a flow diagram illustrating a leaf node ranking
method in decision trees for spatial prediction according to an
embodiment of the present invention;

FIG. 2 is a decision tree trained from spatial events and a
map on which the location of spatial event is displayed, and
numbers displayed with leaf nodes of the decision tree cor-
respond to numbers displayed in rectangular areas of the map,
respectively;

FIG. 3 is a cumulative gain chart of the results respectively
from the existing methods (Laplace, m-branch, and M-esti-
mate) and from a leaf node ranking method proposed by an
embodiment of present invention;

FIG. 4 is a table illustrating AUC (Area Under the Curve)
for a performance evaluation between leaf node ranking
methods according to an embodiment of the present inven-
tion; and

FIG. 5 is a view illustrating results of a cross-validation on
two subgroups (LandslideSetA marked as a rectangle ((J),
LandslideSetB marked as a circle (O)) which spatial events
data is divided into for performance evaluation according to
an embodiment of the present invention.

DESCRIPTION OF THE PRESENTLY
PREFERRED EMBODIMENTS

Embodiments of the present invention will be described
below in detail with reference to the accompanying drawings.
In describing the present invention, if a detailed explanation
for a related known function or construction is considered to
unnecessarily divert the gist of the present invention, such
explanation will be omitted but would be understood by those
skilled in the art.

As the embodiment according to the present invention is
susceptible to various modifications and alternative forms,
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specific embodiments are shown by way of example in the
drawings and will herein be described in detail. It should be
understood, however, that there is no intent to limit the inven-
tion to the particular forms disclosed. On the contrary, the
invention is to cover all modifications, equivalents, and alter-
natives falling within the spirit and scope of the invention.

It will be understood that when an element is referred to as
being “connected” or “coupled” to another element, it can be
directly connected or coupled to the other element or inter-
vening elements may be present. In contrast, when an element
is referred to as being “directly connected” or “directly
coupled” to another element, there are no intervening ele-
ments present. Other words used to describe the relationship
between elements should be interpreted in a like fashion (i.e.,
“between” versus “directly between,” “adjacent” versus
“directly adjacent,” etc.).

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
are intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will be further under-
stood that the terms “‘includes,” and/or “has,” when used
herein, specity the presence of stated features, integers, steps,
operations, elements, and/or components, but do not preclude
the presence or addition of one or more other features, inte-
gers, steps, operations, elements, components, and/or groups
thereof.

Hereinafter, referring to accompanying drawings, a leaf
node ranking method in decision trees for spatial prediction
according to an embodiment present invention will be
described in detail.

FIG. 1 is a flow diagram illustrating a leaf node ranking
method in decision trees for spatial prediction according to an
embodiment of the present invention.

FIG. 2 is a decision tree trained from spatial events and a
map on which the location of a spatial event is displayed, and
numbers displayed with leaf nodes of the decision tree cor-
responds to numbers displayed in rectangular areas of the
map, respectively according to an embodiment of the inven-
tion.

FIG. 3 is a cumulative gain chart of the results respectively
from the existing methods (Laplace, m-branch, and M-esti-
mate) and from a leaf node ranking method proposed by
according to an embodiment of the present invention.

FIG. 4 is a table illustrating AUC for performance evalua-
tion between leaf node ranking methods.

FIG. 5 is a view illustrating results of a cross-validation on
two subgroups (LandslideSetA marked as a rectangle ((J),
LandslideSetB marked as a circle (O)) which spatial events
data is divided into for performance evaluation according to
an embodiment of the present invention.

First, as shown in FIG. 1, a leaf node ranking method
(8100) in decision trees for spatial prediction according to an
embodiment of the present invention includes a spatial pre-
diction data preparation step (S110); a decision tree construc-
tion step (S120); a leaf node ranking step (S130); and a
prediction result obtaining step (S140).

The spatial prediction data preparation step (S110) may
perform a geometric correction to a spatial event occurrence
layer and a spatial event inducing environment layer in order
that locations of the layers correspond to locations of each
other with the same range, the layers being prediction targets
and being data that the decision tree learns.

The decision tree construction step (S120) constructs a
decision tree having one root node, in which each parent node
has multiple child nodes, by using the spatial prediction data
as training data, and each node may have a structure to store
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6

the number of event-occurring classes and of non-event-oc-
curring classes in which the training data is classified for
computing a rank of a leaf node.

The leaf node ranking step (S130) reflects a ranking result
calculated from the root node on the child node using the
decision tree constructed through the learning process, and
may compute the rank of the leaf node using the number of
event-occurring classes and of non-event-occurring classes,
the number of the classes being included in each node on the
paths from the root node to all leaf nodes.

The prediction result obtaining step (S140) maps the rank
(priority) of the leaf node to a location on a spatial coordinate.

Here, the leaf node ranking step (S130) makes the child
node inherit the rank form the parent node to prevent the
ranking result from being biased to the extreme value, O or 1,
whereby the rank is compensated with the rank of a child node
split from the same parent node. A relation between the ranks
of the parent node (R(node.parent)) and child node (R(node-
.child)) is represented as equation 4.

R(node.parent)=R(node.child) [equation 4]

In this case, when the rank of the parent node (R(node.par-
ent)) is the same as the rank of the child node (R(node.child)),
the child node does not include a spatial event-occurring
class. When the child node includes an event-occurring class,
the rank of the child node is more than the rank of the parent
node.

For example, referring to F1G. 2, if the decision tree shown
in the left side of FIG. 2 is induced from the location in which
a probable event occurs, shown in the right side of FIG. 2, a
root node of the decision tree includes both the number of
event-occurring classes, marked with a plus sign (+), and the
number of non-event-occurring classes, marked with a minus
sign (-). After that, the tree forms child nodes according to the
splitting criteria. Accordingly, using the tree constructed to
include these class distributions, the rank of the leaf node is
computed, and the leaf node ranking step (S130) proposed by
the present invention is performed using the equation 5 as
follows.

Hevent

(Pevent + ”non,evem) xd

R(node.child) = R(node.parent) + [equation 5]

Here, d indicates a depth of a node in the tree.

Using equation 5, ranking results of the leaf nodes of the
decision tree in FIG. 2 are computed as R(leaf1)=0.008,
R(leaf2)=0.017, R(leaf3)=0.024, and R(leaf4)=0.019. The
computed rank of each leaf node is mapped to the rectangle
whose number corresponds to the number of the leaf node in
FIG. 2, whereby the result of the spatial event prediction
comes from the relative rank value.

Hereinafter, the exemplary embodiment in which the leaf
node ranking method in decision trees for spatial prediction is
applied to the landslide spatial event will be described.

First, a landslide, which is a typical spatial event, is mostly
caused by intensive rainfalls or earthquakes. However, the
scale of the landslide or whether the landslide occurs may be
different by environmental conditions such as topography,
geological features (soil), forest floor, and the like. Conse-
quently, the landslide spatial event, which is a future event,
may be predicted using similar conditions in a location where
landslides previously occurred.
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Resources needed for the exemplary embodiment are as
follows.

First, a target area is located in between Inje-eup and Buk-
myeon of the Kangwondo province in Korea, and a location
of landslides may be extracted by analyzing aerial photo-
graphs and a triangulated irregular network. Additionally, the
triangulated irregular network is a sort of spatial data struc-
ture constructed by dividing a space into irregular triangles.
The triangulated irregular network is used for analysis of
surface and geography, for example, analysis of topographic
gradient, strike of stratum, terrain volume, and surface length,
sectional view generation, analysis of rivers, extraction of
ridges, topographic visibility analysis, and the like.

A topographic map and a forest map may be map data used
for extracting landslide-related factors. Topographical factors
(for example, aspect, curvature, ridge, and slope) are factors
related to occurrence of landslides.

Factors of the forest map (age, density, diameter, and type)
reflect states of plants and trees, which may help landslide
prevention. Soil factors (texture, drainage, material, and
thickness) are factors effecting on the scale of a landslide.

TABLE 1

Map Source Thematic Layer Scale

Landslide
Aspect
Curvature
Ridge
Slope
Age
Density
Diameter
Type
Texture
Drainage
Material
Thickness

04m
1:25,000

Airborne Image
Topographic map

Forest map

1:25,000

Soil map 1:25,000

Converted into 5x5 m float-type raster images of 1,387,870

Table 1 illustrates components of spatial events and envi-
ronment data sets.

Referring to FIG. 5, locations of spatial events are included
in two groups, LandslideSetA, which is marked as a rectangle
(0O), and LandslideSetB, which is marked as a circle (O). In
this case, FI1G. 5 (a) shows that a prediction model is made by
LandslideSetA and is evaluated using LandslideSetB, while
(b) shows that the prediction model is made by LandslideSetB
and is evaluated using LandslideSetA, and then the average of
the two results is calculated.

In other words, referring to FIG. 4, the result of cross-
validation on two subgroups that landslide spatial event data
is divided into, is 86.09%, which shows a high predictive
evaluation result. In addition to high performance, the present
invention does not require an extra process for finding optimal
parameter values compared to other leaf node ranking meth-
ods. These results are attributed as the present invention does
not use class distribution of simple leaf nodes, but reflects a
rank of a parent node on a computing process of a rank of a
child node to prevent biased ranking results.

The leaf node ranking method in decision trees for spatial
prediction according to the present invention may be imple-
mented in the form of program instructions that can be
executed by various computer components and may be stored
on a computer-readable recording medium. The computer-
readable recording medium may include program instruc-
tions, data files, data structures and the like separately or in
combination. The program instructions stored on the com-
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puter-readable recording medium may be specially designed
and configured for the present invention, or may also be
known and available to those skilled in the computer software
field.

Examples of the computer-readable recording medium
include the following: magnetic media such as hard disks,
floppy disks and magnetic tapes; optical media such as com-
pact disk-read only memory (CD-ROM) and digital versatile
disks (DVDs); magneto-optical media such as floptical disks;
and hardware devices such as read-only memory (ROM),
random access memory (RAM) and flash memory, which are
specially configured to store and execute program instruc-
tions. Examples of the program instructions include not only
machine language codes created by a compiler or the like, but
also high-level language codes that can be executed by a
computer using an interpreter or the like. The above hardware
devices may be changed to one or more software modules to
perform the operations of the present invention, and vice
versa.

When deducing a rank, which may be considered as a
degree of confidence of an event class according to splitting
criteria, fromtraining data or when estimating a probability of
the event class, if a data set has a great imbalance between
estimated classes, the estimate probability to the event occur-
rence is usually very low. Therefore, it is necessary to con-
sider a relative rank. Consequently, the leaf node ranking
method in decision trees for spatial prediction according to an
embodiment of the present invention reflects a rank of a
parent node on a computing process of a rank of a child node,
whereby it may reduce a sharp difference between ranks of
child nodes split from the same parent node. Accordingly,
performance of predictability may be improved.

As conventional methods estimate ranks from dispersion
using uniform class distribution of leaf nodes, those are not
ideal for data sets having a great imbalance. Accordingly, an
additional process is necessary to obtain optimal parameter
values.

Also, the conventional leaf node ranking methods is con-
sidered to be used for only non-spatial applications.

However, the leaf node ranking method in decision trees
for spatial prediction, proposed by the present invention, has
advantages of not requiring an additional process for finding
values for parameters.

Although the preferred embodiments of the present inven-
tion have been disclosed for illustrative purposes, those
skilled in the art will appreciate that various modifications,
additions and substitutions are possible without departing
from the scope and spirit of the invention as disclosed in the
accompanying claims. Accordingly, the disclosed embodi-
ments should not be construed to limit the technical spirit of
the present invention, but should be construed to illustrate the
technical spirit of the present invention. The scope of the
technical spirit of the present invention is not limited by the
embodiments. The scope of the present invention should be
interpreted according to the following appended claims.
Accordingly, the present invention should be construed to
cover all modifications or variations induced from the mean-
ing and scope of the appended claims and their equivalents.

What is claimed is:
1. A leaf node ranking method in decision trees, performed
by a computer, for spatial prediction, comprising:
a memory; and
program instructions in the memory for:
a spatial prediction data preparation operation that per-
forms a geometric correction to a spatial event occur
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rence layer and a spatial event inducing environment
layer such that locations of the spatial event occurrence
layer and the spatial event inducing environment layer
correspond to locations of the other layer within the
same range, the spatial event occurrence layer and the
spatial event inducing environment layer being predic-
tion targets and data that a decision tree learns;

a decision tree construction operation that constructs the
decision tree using the spatial prediction data as training
data, the decision tree including a root node, a parent
node, and a plurality of child nodes associated with the
parent node,

a leaf node ranking operation that (i) performs a ranking
result using the decision tree, the ranking result calcu-
lated from the root node on the child node, and (ii)
calculates a rank using a number of event-occurring
classes and a number of non-event-occurring classes
included in each node on paths from the root node to all
leaf nodes; and

a prediction result obtaining operation that maps the rank
of'theleafnode to alocation on a spatial coordinate, each
node storing the event-occurring classes and non-event-
occurring classes in which training data is classified, for
computing the rank of the leaf node,

10
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R(node.child) = R(node.parent) +

10

wherein

the leaf node ranking operation is performed using the
equation:

Hevent

R4 A
(Pevent + ”non,evem) xd

where (a) R(node.child) represents the rank of the child
node, (b) R(node.parent) represents the rank of the par-
ent node, (¢) n,,,,,, represents the number of event-oc-
curring classes, (d) n, . ..., represents the number of
non-event occurring classes, and (e) d represents a depth
of anode in a tree.

. The method of claim 1, wherein:

R(node.parent)<R(node.child),

when a rank of the parent node (R(node.parent)) is the

same as a rank of the child node (R(node.child)), the
child node does not include a spatial event-occurring
class, and

when the rank of the child node is more than the rank of the

parent node, the child node includes an event-occurring
class.



